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Abstract. Attribute reduction, as one research problem, has played an
important role in rough set theory. In this paper, the concept of upper
approximation reduction is introduced in intuitionistic fuzzy T equiva-
lence information systems. Moreover, rough set approach to upper ap-
proximation reduction is presented, and the judgement theorems and
discernibility matrices are obtained in intuitionistic fuzzy T equivalence
information systems. An example illustrates the validity of the approach,
and shows that it is an efficient tool for knowledge discovery in intuition-
istic fuzzy T equivalence information systems.
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1 Introduction

The theory of rough sets, proposed by Pawlak [9,10], is a powerful mathematical
approach to deal with inexact, uncertain or vague knowledge. It has been success-
fully applied to various fields of artificial intelligence such as pattern recognition,
machine learning, and automated knowledge acquisition.

One important application of rough sets theory is attribute reduction in
databases. For a data set with discrete attribute values, this can be done by
reducing the number of redundant attributes and find a subset of the original
attribute set that contains the same information as the original one. Then, peo-
ple have been attempting to find all reducts. Much study on this area has been
reported and many useful results were obtained [2,5,11,7,12].

In 1986, Atanassov [1] introduced the concept of intuitionistic fuzzy (IF) set.
Combining IF set theory and rough set theory may result in a new hybrid math-
ematical structure for the requirement of knowledge-handling systems. The ex-
isting researches on IF rough sets are mainly concentrated on the approximation
of IF sets. For example, according to fuzzy rough sets in the sense of Ntheda
and Majumda [8], Jena and Ghosh [6] independently proposed the concept of
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the IF rough set in which the lower and upper approximations are both IF sets.
Zhou and Wu [13] explored a general framework for the study of various relation-
based IF rough approximation operators when the IF triangular norm T = min.
Though Zhou and Wu [14] present a general framework for the study of rela-
tion based (I, T )-IF rough sets by using constructive and axiomatic approachs,
the reduction of IF rough sets based on IF T equivalence relation has not been
considered. In this paper, we introduce formal concepts of upper approxima-
tion reductions with IF rough sets. The method using discernibility matrix to
compute all the attribute reductions is developed.

The rest of this paper is structured as follows: to facilitate our discussion,
some preliminary concepts are briefly recalled in Section 2. In Section 3, upper
approximation reduction is proposed for the IF information systems. Moreover,
the judgement theorems and discernibility matrices are obtained, from which we
can provide an approach to attribute reductions in IF T equivalence information
systems. In Section 4, an example illustrates the validity of this method, which
shows that the method is effective in complicated information systems.

2 Intuitionistic Fuzzy Rough Sets and Intuitionistic
Fuzzy T Equivalence Information Systems

In this section we mainly review the basic contents of IF information systems
and IF rough sets based on IF T equivalence relation.

Definition 2.1.[4] Let L∗ = {(α1, α2) ∈ I2|α1 + α2 ≤ 1}. We define a relation
≤L∗ on L∗ as follows: for all (α1, α2), (β1, β2) ∈ L∗, (α1, α2) ≤L∗ (β1, β2) ⇔
α1 ≤ β1 and α2 ≥ β2.

Then the relation ≤L∗ is a partial ordering on L∗ and the pair (L∗,≤L∗) is
a complete lattice with the smallest element 0L∗ = (0, 1) and the greatest el-
ement 1L∗ = (1, 0). The meet operator ∧, join operator ∨ and complement
operator ∼ on (L∗,≤L∗) which are linked to the ordering ≤L∗ are, respec-
tively, defined as follows: for all (α1, α2), (β1, β2) ∈ L∗, (α1, α2) ∧ (β1, β2) =
(min(α1, β1),max(α2, β2)), (α1, α2) ∨ (β1, β2) = (max(α1, β1),min(α2, β2)). ∼
(α1, α2) = (α2, α1).

Definition 2.2.[4] An IF t-norm on L∗ is an increasing, commutative, asso-
ciative mapping T : L∗ × L∗ → L∗ satisfying T (1L∗ , α) = α for all α ∈ L∗.
An IF t-conorm on L∗ is an increasing, commutative, associative mapping S :
L∗ × L∗ → L∗ satisfying T (0L∗ , α) = α for all α ∈ L∗.

Definition 2.3.[4] An IF negator on L∗ is a decreasing mapping N : L∗ → L∗

satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If N (N (α)) = α for all α ∈ L∗,
then N is called an involutive IF negator.

The mapping Ns, defined as Ns(α1, α2) = (α2, α1), ∀(α1, α2) ∈ L∗, is called the
standard IF negator.
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An IF t-norm T and an IF t-conorm S on L∗ are said to be dual with respect
to an IF negator N if

T (N (α),N (β)) = N (S(α, β)), S(N (α),N (β)) = N (T (α, β)) ∀α, β ∈ L∗.

Definition 2.4.[1] Let a set U be fixed. An IF set ˜A in U is an object having

the form ˜A = {〈x, μ
˜A(x), ν ˜A(x)〉|x ∈ U}, where μ

˜A : U → I and ν
˜A : U → I

satisfy 0 ≤ μ
˜A(x) + ν

˜A(x) ≤ 1 for all x ∈ U , μ
˜A(x) and ν

˜A(x) are called the
degree of membership and the degree of non-membership of the element x ∈ U
to ˜A, respectively. The family of all IF subsets of U is denoted by IF (U). The

complement of an IF set ˜A is defined by ∼ ˜A = {〈x, ν
˜A(x), μ ˜A(x)〉|x ∈ U}. The

IF universe set is ˜1U = ˜(1, 0) = ˜1L∗ = {〈x, 1, 0〉|x ∈ U} and the IF empty set is
˜1∅ = ˜(0, 1) = ˜0L∗ = {〈x, 0, 1〉|x ∈ U}.

Definition 2.5.[3] An IF binary relation ˜R on U is an IF subset of U×U , namely,
˜R is given by ˜R = {〈(x, y), μ

˜R(x, y), ν ˜R(x, y)〉|(x, y) ∈ U × U}, where μ
˜R : U ×

U → I and ν
˜R : U × U → I, 0 ≤ μ

˜R(x, y) + ν
˜R(x, y) ≤ 1 for all (x, y) ∈ U × U .

IFR(U × U) will be used to denote the family of all IF relations on U .

An IF T equivalence relation ˜R is an IF relation on U which is reflexive
( ˜R(x, x) = 1), symmetric ( ˜R(x, y) = ˜R(y, x)) and T transitive ( ˜R(x, z) ≥L∗

T ( ˜R(x, y), ˜R(y, z))), for every x, y, z ∈ U .
An IF information system is an ordered quadruple I = (U,AT, V, f), where

U = {x1, x2, · · · , xn} is a non-empty finite set of objects, AT = {a1, a2, · · · , ap}
is a non-empty finite set of attributes, V =

⋃

a∈AT

Va and Va is a domain of

attribute a, f : U × AT → V is a function such that f(a, x) ∈ Va, for each
a ∈ AT , x ∈ U , called an information function, where Va is an IF set of universe
U . That is f(a, x) = (μa(x), νa(x)), for all a ∈ AT, where μa : U → [0, 1] and
νa : U → [0, 1] satisfy 0 ≤ μa(x) + νa(x) ≤ 1, for all x ∈ U . μa and νa are,
respectively, called the degree of membership and the degree of non-membership
of the element x ∈ U to attribute a. We denote ã(x) = (μa(x), νa(x)), then it is
clear that ã is an IF set of U .

Definition 2.6.An IF T equivalence information system is an ordered quintuple
˜I = (U,AT, V, f,�), where (U,AT, V, f) is an IF information system, � is the

mapping from power set AT into the family set ˜R of IF T equivalence relation.
Let ˜I = (U,AT, V, f,�) be an IF T equivalence information system, for any

A ⊆ AT , a ∈ A, ˜Ra ∈ ˜R be an IF T equivalence relation with respect to
attribute a, denoted as ˜RA =

⋂

a∈A

˜Ra.

Definition 2.7.[14] Let ˜I = (U,AT, V, f,�) be an IF T equivalence information

system. ˜X ∈ IF (U) and A ⊆ AT , the T -upper and S-lower approximations of
˜X with respect to IF T equivalence relation ˜RA are respectively defined by

˜RA( ˜X)(x) = ∨
y∈U

T ( ˜RA(x, y), ˜X(y)), ∀x ∈ U ,

˜RA( ˜X)(x) = ∧
y∈U

S(∼ ˜RA(x, y), ˜X(y)), ∀x ∈ U .
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From the definition of IF rough approximation, the following important proper-
ties in IF T equivalence information systems have been proved.

Theorem 2.1.[14] Let ˜I = (U,AT, V, f,�) be an IF T equivalence information

system. ˜X, ˜Y ∈ IF (U) and A ⊆ AT then the T -upper and S-lower approxima-
tions satisfy the following properties.

(1) ˜RA(∼ ˜X) = ∼ ˜RA( ˜X), ˜RA(∼ ˜X) =∼ ˜RA( ˜X).

(2) ˜RA( ˜X) ⊆ ˜X ⊆ ˜RA( ˜X).

(3) ˜RA( ˜X ∩ ˜Y ) = ˜RA( ˜X) ∩ ˜RA(˜Y ), ˜RA( ˜X ∪ ˜Y ) = ˜RA( ˜X) ∪ ˜RA(˜Y ).

(4) ˜X ⊆ ˜Y ⇒ ˜RA( ˜X) ⊆ ˜RA(˜Y ) and ˜RA( ˜X) ⊆ ˜RA(˜Y ).

(5) ˜RA( ˜X ∪ ˜Y ) ⊇ ˜RA( ˜X) ∪ ˜RA(˜Y ), ˜RA( ˜X ∩ ˜Y ) ⊆ ˜RA( ˜X) ∪ ˜RA(˜Y ).

(6) ˜RA(α̃) = α̃, ˜RA(α̃) = α̃, for α = (α1, α2) ∈ L∗.

In particular, ˜RA(˜1∅) = ˜RA(˜1∅) = ˜1∅, ˜RA(˜1U ) = ˜RA(˜1U ) = ˜1U .

(7) ˜RA( ˜RA( ˜X)) = ˜RA( ˜X), ˜RA( ˜RA( ˜X)) = ˜RA( ˜X).

3 Upper Approximation Reduction in IF T Equivalence
Information Systems with Decision

In this section we define upper approximation reduction with respect to single
IF decision class; we also develop the method based on discernibility matrix to
compute all the upper approximation reductions.

An IF T equivalence information system with decision, is a special case of
an IF T equivalence information system ˜I = (U,AT ∪ D,V, f,�), where ˜D =

{ ˜Dk|k = 1, 2, · · · , n}, ˜Dk is an IF set of U called IF decision class.

Definition 3.1. Let ˜I = (U,AT ∪D,V, f,�) be an IF T equivalence informa-

tion system with decision, ˜Dk ∈ ˜D be the IF decision class, and B ⊆ AT . If
˜RB( ˜Dk)(x) = ˜RAT ( ˜Dk)(x) for any x ∈ U , we say that B is an upper consistent

set of AT relative to ˜Dk. Moreover, if any proper subset of B is not the upper
approximation set, then B is called one upper approximation reduction of this
IF information system.

Theorem 3.1. Let ˜I = (U,AT ∪D,V, f,�) be an IF T equivalence information

system with decision, ˜Dk ∈ ˜D be the IF decision class, B ⊆ AT . Attribute set B
is an upper approximation consistent set if and only if for any xi, xj ∈ U , there

must exist ar ∈ B such that T ( ˜Rar (xi, xj), ˜Dk(xj)) ≤ ˜RAT (Dk)(xi).

Proof. On the one hand, if B ⊆ AT , then ˜RB ⊇ ˜RAT , we can easily show that
˜RB( ˜Dk)(xi) ≥ ˜RAT ( ˜Dk)(xi), for any xi ∈ U .
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On the other hand,

˜RB( ˜Dk)(xi) ≤ ˜RAT ( ˜Dk)(xi)

⇔ ∨
xj∈U

T ( ˜RB(xi, xj), Dk(xj)) ≤ ˜RAT ( ˜Dk)(xi)

⇔ ∨
xj∈U

T ( ∧
ak∈B

˜Rak
(xi, xj), Dk(xj)) ≤ ˜RAT ( ˜Dk)(xi)

⇔ ∨
xj∈U

∧
ak∈B

T ( ˜Rak
(xi, xj), Dk(xj)) ≤ ˜RAT ( ˜Dk)(xi)

⇔∀xj ∈ U, ∃ar ∈ B, such that, T ( ˜Rar (xi, xj), Dk(xj)) ≤ ˜RAT ( ˜Dk)(xi)

The theorem is proved.

Definition 3.2. Let ˜I = (U,AT∪D,V, f,�) be an IF T equivalence information

system with decision, ˜Dk ∈ ˜D be the IF decision class, B ⊆ AT . For any
xi, xj ∈ U , we denote

UDis(xi, xj) = {ar ∈ AT |T ( ˜Rar (xi, xj), ˜Dk(xj)) ≤ ˜RAT (Dk)(xi)},
UM = (uij)n×n,

where uij = UDis(xi, xj), then UDis(xi, xj) is said to be upper approximation
discernibility attribute set between objects xi and xj . And matrix UM is re-
ferred to as upper approximation discernibility matrix of the IF T equivalence
information system with decision.

Theorem 3.2. Let ˜I = (U,AT ∪D,V, f,�) be an IF T equivalence information

system with decision, ˜Dk ∈ ˜D be the IF decision class, B ⊆ AT . Attribute set
B is an upper approximation consistent set if and only if B ∩ UDis(xi, xj) �= ∅
for all xi, xj ∈ U

Proof. It can be obtained from Theorem 3.1 and Definition 3.2.

Definition 3.3. Let ˜I = (U,AT∪D,V, f,�) be an IF T equivalence information

system with decision, ˜Dk ∈ ˜D be the IF decision class, B ⊆ AT . UM be the
upper approximation discernibility matrix of the IF T equivalence information
system with decision ˜I. Let

UF = ∧{∨{a|a ∈ UDis(xi, xj)}|xi, xj ∈ U}.

Then UF is called discernibility formulas of upper approximation in IF T equiv-
alence information system with decision ˜I.
Theorem 3.3. Let ˜I = (U,AT ∪D,V, f,�) be an IF T equivalence information

system with decision, ˜Dk ∈ ˜D be the IF decision class, B ⊆ AT . The minimal
disjunctive normal form of discernibility formula of upper approximation is

UF =
p
∨

k=1
(
qk∧
s=1

as).



60 W. Xu, Y. Liu, and W. Sun

Let UBk = {as|s = 1, 2, · · · , qk}. Then {UBk|k = 1, 2, · · · , p} is just set of all
upper approximation reductions in IF T equivalence information system with
decision ˜I.

Proof. For any xi, xj ∈ U , by the definition of minimum disjunctive normal form,
we have that UBk is upper approximation consistent set. If one element of UBk is

reduced in UF =
p
∨

k=1

(UBk), without loss of generality and the result denoted by

UB′
k, then there exist xi0 , xj0 ∈ U such that UB′

k ∩UDis(xi0 , xj0 ) = ∅. So, UB′
k

is no an upper approximation consistent set. So UBk is an upper approximation
reduction in IF T equivalence information system with decision.

On the other hand, we known that the discernibility formula of upper approx-
imation includes all UDis(xi, xj). Thus, there is not other upper approximation
reduction except UBk.

4 An Illustrated Example

In this section, we employ an example to illustrate our approach in this paper.

Example 4.1. Table 1 shows an IF information system, where U = {x1, x2, x3,
x4, x5, x6, x7, x8, x9, x10}, AT = {a1, a2, a3, a4, a5}. The membership degree and
non-membership degree of every object are given in the following table.

Table 1. An IF information system

U a1 a2 a3 a4 a5
x1 (0.3, 0.5) (0.6, 0.4) (0.5, 0.2) (0.7, 0.1) (0.5, 0.4)
x2 (0.2, 0.7) (0.1, 0.8) (0.4, 0.5) (0.1, 0.8) (0.2, 0.8)
x3 (0.2, 0.7) (0.1, 0.8) (0.4, 0.5) (0.7, 0.1) (0.2, 0.8)
x4 (0.1, 0.8) (0.1, 0.8) (0.2, 0.7) (0.1, 0.8) (0.2, 0.8)
x5 (0.9, 0.1) (0.8, 0.1) (0.8, 0.1) (0.9, 0.0) (0.7, 0.1)
x6 (0.4, 0.6) (0.8, 0.1) (0.6, 0.3) (0.9, 0.0) (0.7, 0.1)
x7 (0.3, 0.5) (0.7, 0.3) (0.5, 0.1) (0.7, 0.1) (0.6, 0.3)
x8 (0.5, 0.3) (0.8, 0.1) (0.7, 0.1) (1.0, 0.0) (0.7, 0.1)
x9 (0.6, 0.3) (0.9, 0.0) (0.7, 0.1) (0.8, 0.2) (0.8, 0.0)
x10 (0.9, 0.1) (0.9, 0.0) (0.8, 0.1) (0.6, 0.3) (1.0, 0.0)

Every IF attribute ak can define an IF T equivalence relation ˜Rak
as:

˜Rak
(xi, xj) = (μ

˜Rak
(xi, xj), ν ˜Rak

(xi, xj)),

where, μ
˜Rak

(xi, xj) = 1 − max{|μak
(xi) − μak

(xj)|, |νak
(xi) − νak

(xj)|} and

νRak
(xi, xj) = 1

2 (|μak
(xi) − μak

(xj)| +|νak
(xi) − νak

(xj)|). Consider the IF t-

norm T : T (α, β) = (max{0, α1 + β1 − 1},min{1, α2 + β2}) for α = (α1, α2), β =
(β1, β2) ∈ L∗. Let U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},A = {(0.6, 0.3), (0.3,
0.5), (0.9, 0.1), (0.6, 0.3), (0.7, 0.1), (0.2, 0.7), (0.4, 0.5), (0.5, 0.2), (0.7, 0.2),(1.0, 0)},
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˜RAT is computed as follows:
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(1.0,0) (0.3,0.65) (0.5,0.45) (0.3,0.65) (0.4,0.5) (0.7,0.25) (0.9,0.1) (0.7,0.25) (0.6,0.35) (0.4,0.5)
(0.3,0.65) (1.0,0) (0.3,0.65) (0.8,0.2) (0.2,0.8) (0.2,0.8) (0.3,0.65) (0.1,0.85) (0.2,0.8) (0.2,0.8)
(0.5,0.45) (0.3,0.65) (1.0,0) (0.3,0.65) (0.3,0.7) (0.3,0.7) (0.4,0.55) (0.3,0.7) (0.2,0.8) (0.2,0.8)
(0.3,0.65) (0.8,0.2) (0.3,0.65) (1.0,0) (0.2,0.8) (0.2,0.8) (0.3,0.65) (0.1,0.85) (0.2,0.8) (0.2,0.8)
(0.4,0.5) (0.2,0.8) (0.3,0.7) (0.2,0.8) (1.0,0.5) (0.5,0.5) (0.4,0.5) (0.6,0.3) (0.7,0.25) (0.7,0.3)
(0.7,0.25) (0.2,0.8) (0.3,0.7) (0.2,0.8) (0.5,0) (1.0,0) (0.8,0.15) (0.7,0.2) (0.7,0.25) (0.5,0.5)
(0.9,0.1) (0.3,0.65) (0.4,0.55) (0.3,0.65) (0.4,0.15) (0.8,0.15) (1.0,0) (0.7,0.2) (0.7,0.25) (0.4,0.5)
(0.7,0.25) (0.1,0.85) (0.3,0.7) (0.1,0.85) (0.6,0.2) (0.7,0.2) (0.7,0.2) (1.0,0) (0.8,0.2) (0.6,0.35)
(0.6,0.35) (0.2,0.8) (0.2,0.8) (0.2,0.8) (0.7,0.25) (0.7,0.25) (0.7,0.25) (0.8,0.2) (1.0,0) (0.7,0.25)
(0.4,0.5) (0.2,0.8) (0.2,0.8) (0.2,0.8) (0.7,0.3) (0.5,0.5) (0.4,0.5) (0.6,0.35) (0.7,0.25) (1.0,0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Suppose an IF decision is ˜D = {(1, 0), (0.6, 0.4), (0.5, 0.4), (0.7, 0.1), (0.4, 0.3),
(1, 0), (0, 1), (0.5, 0.5), (0.3, 0.5), (0.7, 0.2)}, then ˜RAT ( ˜D) = {(1.0, 0), (0.6, 0.3),
(0.5, 0.4), (0.7, 0.1), (0.5, 0.3), (1.0, 0), (0.9, 0.1), (0.7, 0.2), (0.7, 0.25), (0.7, 0.2)} and
the upper approximation discernibility matrix of UM is as follows:

UM =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

AT AT AT AT AT AT AT AT AT AT
{2, 4, 5} AT AT {3} AT {2, 4, 5} AT AT AT AT
{2} {4} AT {4} AT {2, 5} AT AT AT {1, 2, 3, 5}
AT AT AT AT AT AT AT AT AT AT
{1} AT AT AT AT {1} AT AT AT {4, 5}
AT AT AT AT AT AT AT AT AT AT
{2, 5} AT AT AT AT AT AT AT AT AT
{2, 4, 5} AT AT AT AT {1} AT AT AT AT
{1, 2, 5} AT AT AT AT {1} AT AT AT {1, 3, 4, 5}
{1, 2, 3, 5} AT AT AT AT {1, 4, 5} AT AT AT AT

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Where 1,2,3,4,5 means a1, a2, a3, a4, a5. We can get that {a1, a2, a3, a4} is the
only reduction of AT .

5 Conclusions

Intuitionistic fuzzy rough sets are the extension of fuzzy rough sets to deal with
both fuzziness and vagueness in data. It is more material and concise than
fuzzy rough sets to describe the essence of fuzziness. The existing researches
on intuitionistic fuzzy rough sets are mainly concentrated on the construction
of approximation operators. Less effort has been put on the attributes reduc-
tion of databases with intuitionistic fuzzy rough sets. In this paper, the concept
of upper approximation reduction has been constructed in intuitionistic fuzzy
T equivalence information systems. Moreover, rough set approach to upper ap-
proximation reductions has been presented and the judgement theorems and
discernibility matrices have been obtained in intuitionistic fuzzy T equivalence
information systems. The effectiveness of the approach to attribute reduction
has been demonstrated by an example.

Acknowledgments. This work is supported by National Natural Science Foun-
dation of China (No.61105041,71071124 and 11001227), Postdoctoral Science



62 W. Xu, Y. Liu, and W. Sun

Foundation of China (No.20100481331) and National Natural Science Founda-
tion of CQ CSTC (No. cstc2011jjA40037) and Graduate Innovation Foundation
of Chongqing University of Technology (No.YCX2011312).

References

1. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)
2. Beynon, M.: Reducts within the variable precision rough sets model: a further

investigation. European Journal of Operational Research 134, 592–605 (2001)
3. Bustince, H., Burillo, P.: Structures on Intuitionistic Fuzzy Relations. Fuzzy Sets

and Systems 78, 293–303 (1996)
4. Cornelis, C., Deschrijver, G., Kerre, E.E.: Implication in intuitionistic fuzzy and

interval-valued fuzzy set theory: construction, classification, application. Interna-
tional Journal of Approximate Reasoning 35, 55–95 (2004)

5. He, Q., Wu, C.X., Chen, D.G., Zhao, S.Y.: Fuzzy rough set based attribute reduc-
tion for information systems with fuzzy decisions. Knowledge-Based Systems 24,
689–696 (2011)

6. Jena, S.P., Ghosh, S.K.: Intuitionistic fuzzy rough sets. Notes on Intuitionistic
Fuzzy Sets 8, 1–18 (2002)

7. Mi, J.S., Wu, W.Z., Zhang, W.X.: Comparative studies of knowledge reductions in
inconsistent systems. Fuzzy Systems and Mathematics 17, 54–60 (2003)

8. Nanda, S., Majumda, S.: Fuzzy rough sets. Fuzzy Sets and Systems 45, 157–160
(1992)

9. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-
ences 11, 341–356 (1982)

10. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27
(2007)

11. Qian, Y.H., Liang, J.Y., Li, D.Y., Wang, F., Ma, N.N.: Approximation reduction
in inconsistent incomplete decision tables. Knowledge-Based Systems 23, 427–433
(2010)

12. Xu, W.H., Zhang, X.Y., Zhong, J.M., Zhang, W.X.: Attribute reduction in or-
dered information systems based on evidence theory. Knowledge and Information
Systems 25, 169–184 (2010)

13. Zhou, L., Wu, W.Z.: On generalized intuitionistic fuzzy approximation operators.
Information Sciences 178, 2448–2465 (2008)

14. Zhou, L., Wu, W.Z., Zhang, W.X.: On characterization of intuitionistic fuzzy rough
sets based on intuitionistic fuzzy implicators. Information Sciences 179, 883–898
(2008)


	Upper Approximation Reduction Based on Intuitionistic Fuzzy T Equivalence Information Systems
	Introduction
	Intuitionistic Fuzzy Rough Sets and Intuitionistic Fuzzy T Equivalence Information Systems
	Upper Approximation Reduction in IF T Equivalence Information Systems with Decision 
	An Illustrated Example 
	Conclusions
	References




